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Abstract. Recently we suggested studying the scaling properties of complex two- 
dimensional phase transitions by calculating the universal amplitudes of interfacial 
free energies on a torus geometry employing Monte Carlo simulations. Here we test 
this method at  the fi x fi phase transition in the Ising lattice gas on a triangular 
lattice belonging to the chiral three-state Potts universality class. The interfacial free 
energies for this lattice gas model can be written in terms of free energy differences 
between systems with different sizes. The algorithm to calculate these free energy 
differences is presented. Using lattice sizes up to 18 x 18 and modest computing 
effort, we find that the universal amplitude A = 1.22 f 0.02, in accordance with the 
exact analytical value for the non-chiral three-state Potts model, A = 1.203291 . . ., 
which we determined earlier. 

Finite-size scaling (FSS) is an important tool in numerical investigations of critical 
phenomena. In particular, the finite-size scaling behaviour of interfacial free energies 
and correlation lengths is very useful. Recently, the exact relationship between the 
values of critical exponents and universal finite-size scaling amplitudes of correlation 
lengths and interfacial free energies has been established for two-dimensional phase 
transitions. This was first done for semi-infinite strip geometries (see e.g. Luck 1982 
and Cardy 1984). More recently we generalised this to  torus geometries for transitions 
in the Potts model universality class (Park and den Nijs 1988). 

In the case of semi-infinite lattices (using the transfer matrix method) these re- 
lationships lead to  very accurate numerical results for the critical exponents (see 
e.g. Blote and Nightingale 1985, Blote and den Nijs 1988). However, the transfer 
matrix method is limited to small strip widths. It is possible to  obtain the exact free 
energy of semi-infinite strips only for widths up to about N = 18 (for Ising type models 
with two states per site). There are many interesting problems where the asymptotic 
scaling behaviour will not set in until larger lattice sizes; for example in systems with 
incommensurate domain wall networks (Park e l  a1 1986). For large lattice sizes ap- 
proximate methods such as Monte Carlo simulations are the only remaining option. 
For this purpose, and guided by the fast convergence of the FSS method on semi-infinite 
strips, we set out to develop and test a Monte Carlo version of the above FSS type 
analysis of universal amplitudes for interfacial free energies (Park and den Nijs 1989). 

In MC simulations the lattice is finite in both directions: a torus instead of a semi- 
infinite strip. The relationship between the critical exponents and the universal am- 
plitudes of the interfacial free energies is more complex than in the cylinder geometry, 
but this exact relationship has been determined analytically in the case of the Potts 
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model universality class (Park and den Nijs 1988). In principle this can be extended 
to most other 2D universality classes (Saleur 1987, Park and Widom 1989, 1990). 

In an earlier paper (Park and den Nijs 1989) we introduced this MC method and 
presented our initial test results. We applied the method to the 2D Ising and three- 
state Potts model. We found that in those systems small lattice sizes, up to 1 0 ~  10, and 
modest amount of computer time are sufficient to determine the universal amplitudes 
with an accuracy of about one per cent. 

There are two aspects that limit the accuracy: the statistical error in the values of 
the interfacial free energies at  finite lattices, and the inaccuracy due to the extrapola- 
tion of these results to infinite lattice sizes. These effects work in opposite directions. 
The extrapolation improves if you study larger lattices, but the statistical error in- 
creaes with lattice size. I t  requires much more computing time to reach the same 
statistics for larger lattices. To actually improve on the estimate of the universal am- 
plitude you need to improve the statistics, otherwise the corrections to scaling to the 
universal amplitudes, since they scale with the lattice size, will drown in the statistical 
error. This implies that for a given amount of computer CPU there exists an optimal 
maximum lattice size. The question then arises whether this MC method is feasible 
with a modest amount of CPU time. This was  the main purpose of our previous tests 
and also of the test reported here. 

The Ising and three-state Potts model mentioned above, and also the transitions in 
the lattice gas model discussed here, are still simple enough that we can compare with 
results from the transfer matrix version of the FsS method, and also with other Monte 
Carlo methods. The strip widths used in transfer matrix calculations are typically 
smaller than the lattice sizes employed in MC calculations. The transfer matrix version 
of FSS is so successful, because it turns out that typically the asymptotic scaling regime, 
where only one or two corrections to scaling dominate, is reached quickly (in these 
relatively simple systems already at  stripwidths of order N < 18). 

To be able to  extrapolate to infinite strip width, it is important that in transfer 
matrix calculations the interfacial free energies at  finite N are known with machine 
accuracy. It is possible, however, to live with less accuracy. Our previous tests and 
also the one reported here confirm our expectation that, also in torus geometries, small 
lattice sizes up to 18 x 18 are sufficient to reach the the asymptotic scaling regime 
dominated by the leading corrections to scaling, and that with a modest amount of 
CPU computer time it is indeed possible to obtain enough statistical accuracy to make 
an extrapolation possible that leads to universal amplitudes with an accuracy at  the 
one per cent level. 

As mentioned above, the major reason for introducing this new MC method is 
that it is impossible to obtain the exact values of the largest eigenvalues of transfer 
matrices for large strip widths. Compared to the Monte Carlo renormalisation group 
(MCRG) method, our method has the advantage of being conceptionally simpler and 
is more versatile. For example, it does not lock you into a specific periodicity imposed 
by the cell spin structure required by the real-space renormalisation character of the 
MCRG method. This aspect is especially important in the study of the commensurate- 
incommensurate transitions. 

In this paper we address three issues. 

( i )  We report the results of the test of our MC method on the f i  x 4 transition 
in the ZD Ising lattice gas, which requires a larger lattice and has a more complicated 
correction-to-scaling structure than in the Ising and three-state Potts model. We 
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show that  with lattice sizes up to  18 x 18, we obtain the universal amplitude with an 
accuracy of 2% with a modest amount of computer time. We compare the numerical 
value of the universal amplitude with the exact analytical value for the non-chiral 
three-state Potts model which was determined recently by the authors. We find a 
good agreement within the numerical accuracy. 

(ii) Our earlier MC algorithm for calculating the interfacial free energies, by means 
of periodic versus antiperiodic type boundary conditions, does not work for lattice gas 
models. Interfacial free energies for lattice gas models can be written in terms of free 
energy differences between systems with different sizes. We present the algorithm to 
calculate these interfacial free energy. 

(iii) The 4 x fi phase transition in the triangular lattice gas has been studied 
extensively in the past, e.g. by means of MC simulations (Landau 1983), and by means 
of transfer matrix calculations (Kinzel and Schick 1981). However, there are some 
interesting remaining aspects associated with the presence of chirality (Ost,lund 1981, 
Huse 1981; for a review see den Nijs 1988) However, a 
systematic study of chirality effects in this model can be performed more efficiently 
using transfer matrices because the asymptotic scaling regime can be reached with the 
attainable maximum strip width N = 18. 

We address this issue. 

Consider the triangular Ising antiferromagnet with Hamiltonian E :  

The first sum is over all nearest-neighbour pairs and ui = f l  is the Ising spin a t  site i. 
As usual, the temperature l/kBT is absorbed in the coupling constants K and H .  The 
nearest-neighbour coupling constant K is positive for antiferromagnets. Alternatively, 
the model can be represented as a lattice gas 

'H = J ninj  - p E n ,  
< i , j >  i 

with ui = 2ni - 1, and J = 21< and p = 6 K  - H .  For H > 0, this model is suitable 
for the description of physisorbed monolayers like krypton or helium on graphite, 
because it exhibits a phase transition into an ordered fi x fi phase, see figure 1. 
The 4 x f i  ground state has threefold permutational degeneracy, and therefore was 
predicted to belong to  the universality class of the three-state Potts model (Alexander 
1975). Previous calculations (Kinzel and Schick 1981 , Landau 1983) confirm that 
the critical exponents have the three-state Potts values. More recently it has been 
realised that the presence of chirality might change the nature of three-state Potts 
transitions (Huse and Fisher 1982). This model includes chirality. Numerical evidence 
from different models in the same universality class suggests that  small amounts of 
chirality do not alter the critical exponents from three-state Potts values (for a review, 
see den Nijs 1988). It is not known yet whether the relation between universal finite- 
size scaling amplitudes on a torus and the critical exponents changes with the presence 
of chirality; most likely not. Our results for the universal amplitudes along with the 
previous results for the critical exponents provide evidence that the relation does not 
change with the presence of chirality. 

Figure 2 shows the phase diagram obtained by Kinzel and Schick (1981). We 
limit our study to  the line 2 p  = 35, where chirality almost vanishes. Along that  line 
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Figure 1. 
on lattice sites. 

A & x & phase. Full circles represent gas atoms (or up spins) residing 

2 1 / J  

Figure 2. The phase diagram for the triangular Ising lattice gas. Taken from 
Kinzel and Schick (1981). We run Monte Carlo simulations along the 2 p  = 35 line 
(broken line). 

chirality is completely absent a t  zero temperature. As we will see, chirality arises 
a t  finite temperatures because of a difference in intersection energies between the 
so-called clockwise and anticlockwise domain walls. 

F i k t ,  notice that  the energy of a vacancy in the 4 x 4 state and that of an 
interstitial are the same a t  '2p = 3 5 ,  i.e. E ( v )  = p and E ( i )  = - p  + 3 5 .  This 
symmetry extends to  the domain wall excitations. Label the three equivalent ground 
states by 0 = 2r i /3  with i = 0 , 1 ,  and 2.  There are two topologically different types 
of domain walls. A domain wall with state i t,o the left and state i + 1 (mod 3) to  
the right is called a clockwise domain wall, and a wall with state i to  the right and 
i + 1 to  the left an anticlockwise interface. Chirality is associated with a (free) energy 
difference between these walls. 

There are several possible microscopic arrangents to form walls. Walls with a 
local density higher than that of the commensurate ground states are called heavy 
or superheavy walls, while walls with a lower density than the commensurate density 
are referred to as light walls (for a general review on this topic see den Nijs 1988). 
Figures 3(a)-(d) show the elementary versions of each type: a heavy clockwise (HC) 
wall, a light clockwise (LC) wall, a superheavy anticlockwise (SA) wall, and a light 
anticlockwise (LA) wall. The excitation energies per 4 distance for these wall types, 
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when they are straight and do not meander, are easy t o  determine (see figure 4): 

E ( H C )  = - p / 3  + 5 E ( L C )  = +2p/3 
E ( S A )  = -2p/3 + 2 J  E (LA)  = + ~ / 3 .  (3) 

In the hard hexagon model limit, p N- 0 (Baxter 1980), the light walls, LC and L A ,  
dominate. In the opposite limit, close to zero magnetic field H ZI 0 ( p  21 35 ) ,  the 
(super) heavy walls, HC and S A ,  dominate. Close to  2 p  = 35 the HC and LA walls 
are the dominant microscopic configurations. Moreover, a t  2p = 35 the difference in 
energy between clockwise and anticlockwise walls, i.e. chirality, vanishes entirely. The 
wall energies, and also the energies of vacancies and interstitials, are symmetric under 
reflection with respect to this point 2 p  = 35: E ( H C )  c* E ( L A ) ,  E ( L C )  E ( S A ) ,  
and E ( v )  - E( i ) .  

IC! Id) 

Figure 3. Interfaces in the triangular Ising lattice gas. ( a )  a heavy clockwise (HC) 
wall. ( b )  a light clockwise (Lc)wall. ( c )  a superheavy anticlockwise ( S A )  wall. ( d )  a 
light anticlockwise ( L A )  wall. 

This symmetry extends to the elementary excitations in the walls. Meander exci- 
tations do not break this symmetry. I t  is easy to  check that the point-defect energies 
associated with a kink in the wall, i.e. turns of 60' (a HC wall transforms into a LA 
wall) and also turns over 120' (each wall type remains unchanged), are equal to  zero 
in this model. The chiral symmetry does not get broken until one considers the core 
energies of intersections: an intersection where three HC walls meet (under 120') costs 
an energy Ein,(HC) = p / 2  while an intersection of three LA walls costs an energy 
Ein,(LA) = - p / 6 .  It is slightly more complicated than that.  The core energy can be 
lowered by removing one particle from the core, Ein,(HC) = p / 6  -In 3 (removing two 
particles does not help). 

This means that a t  finite temperatures the free energy of clockwise walls is larger 
than that of anticlockwise walls. But the degree of difference may be very small 
because there may be few excitations of the intersections when two types of domain 
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0 3 6 

2 p / J  

Figure 4. The excitation energies E for the interfaces. 

walls are almost indistinguishable. So the line of zero chirality must bend slightly to 
the right in figure 2 (2p > 3 4 .  

We now turn to  the question of how to calculate these interfacial free energies in 
finite systems by Monte Carlo simulations. The conventional method of calculating 
the interfacial free energy in, e.g., the ferromagnetic Ising model is to  compare a 
system with periodic and antiperiodic boundary conditions (Park and den Nijs 1988, 
1989). The antiperiodic boundary condition imposes a Bloch wall in the system, and 
therefore the free energy difference between the two systems is equal to the Bloch 
wall free energy. This does not work for the lattice-gas model due to  the presence 
of the magnetic field. The magnetic field destroys the gauge invariance of the seam 
(the boundary with modified interactions to impose the interface). The free energy 
difference between systems with these two boundary conditions includes not only the 
free energy of the interface but also the free energy of the seam. Moreover, pinning 
behaviour of the interface with respect to  the seam adds another contribution to  the 
free energy difference. Such effects have been discussed in detail recently by Blote and 
den Nijs (1988). So it  is useful to  find a way to  force an interface into the system 
without seams. 

Consider a N,  x Ny triangular lat,tice with periodic boundary conditions in both 
the horizontal (x) and the vertical (y) directions (figure 5). In order to create a f i x  fi 
phase without frustrations, N ,  must be a multiple of three, i.e. N ,  = 3n, where n, is a 
positive integer. In addition, Ny must be a mult8iple of six, i.e. Ny = 6ny,  because this 
lattice is periodic in every two rows of triangles in the vertical direction. For example, a 
6 x 6 lattice can accommodate a 4 x 4 configuration without frustrations, see figure 
5(a). Clockwise (anticlockwise) interfaces in the vertical direction can be imposed by 
increasing (decreasing) the number of triangles in the horizontal direction N,, by one, 
i.e. N,  + N ,  f 1, see figure 5 ( b ) ,  (c). A lattice with N ,  = 3n, + 1 should contain a 
clockwise wall in the vertical direction and a latt,ice with N,  = 3n,-1 an anticlockwise 
wall. 

The horizontal length of the lattice L ,  = N,d (where d is the lattice constant) and 
the vertical length L,  = ( f i /2)NYd.  So the aspect ratio s = L,/L,  = ( 2 / & ) N 2 / N y .  
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(01 1 b )  ( c l  

Figure 5. (a) A fi x fi configuration on a 6 x 6 lattice with periodic boundary 
conditions. ( b )  A clockwise interface in the vertical direction on a 7 x 6 lattice, im- 
posed by periodic boundary conditions. ( c )  An anticlockwise interface in the vertical 
direction on a 5 x 6 lattice, imposed by periodic boundary conditions. 

The interfacial free energies per unit length of clockwise and anticlockwise walls, q+ 
and Q-, are given as 

q*(N,,N,) = [F*(N,lN,) - ~0(~,1~,)1/~, (4) 

where F+, Fo, and F- represent the total free energy of the system with N ,  = +I,  0,  
and -1 (mod 3) respectively. Strictly speaking, these free energies can not be defined 
for the same value of N,. Therefore we need t o  interpolate. The free energy F* at  
N,  = 0 (mod 3) is defined as 

F*(N,, N,) = $F*(lV, 1 ,  N,) + $F*(N, r 2,  N,).  (5)  

This type of interpolation creates an artificial correction to  scaling, but only of order 
N F ~ .  Similarly, we interpolate 

Fo(N, f 1 ,  N,) = $Fo(N,, N,) + !Fo(N,  f 3,  N,) 

F * ( N , r l , N , ) =  ~ F * ( N , ~ 2 , N y ) + ~ F * ( N , * . , N y )  (6) 

where N,  = 0 (mod 3) .  
The interfacial free energies ( N ,  , N , )  a t  N,  = 0 (mod 3) are now rewritten as 

q*(N,,N,) = [$F*(N,  * l , N y ) +  iF*(N, r 2 J Y )  - FO(~,,~,)l/~,. (7) 

The interfacial free energies Q~ at  N ,  = f l  (mod 3) can be rewritten similarly. 
The interfacial free energy Q is finite in the ordered phase, vanishes in the dis- 

ordered phase, and scales a t  criticality (Nightingale 1976, 1982, Privman and Fisher 
1984) as 

q(L,, L,) = L i l ( A ( s )  + i3(s)LPr + .  .) (8) 

where s = L,/L,  the aspect ratio and yir < 0 the irrelevant exponent. The amplitude 
A ( s )  is universal and varies continuously with the aspect ratio s (Park and den Nijs 
1988), while the amplitude B ( s )  is non-universal. 

In Monte Carlo simulations, it is difficult to  obtain the free energy directly, but the 
free energy difference A F  = F - F' between two systems with similar Hamiltonians 
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31 and ‘H‘ can be written in terms of ensemble averages (Bennett 1976, Park and den 
Nijs 1989) as 

(f(31’ - ‘H + A F ) ) ,  = (f(31 - 31’ - A F ) ) N ,  (9) 

with f (z )  = 1/(1 + e,), the Fermi function which is the optimal choice according to 
Bennett (1976). In our earlier tests for the Ising and three-state Potts model, the two 
systems were of the same size but had different boundary conditions. Now we compare 
systems with the same boundary conditions, but with different sizes. We calculate the 
free energy difference between two systems where the horizontal sizes N ,  differ by one, 
i.e. A F ( N ,  - f ,  N , )  E F ( N , , N , )  - F ( N ,  - l l N y ) .  All interfacial free energies can 
be rewritten in terms of these free energy differences A F ,  e.g. q*(N,, N,) at  N,  = 0 
(mod 3) in (7) is given as 

Similarly, Q a t  N,  = rtl (mod 3) can be obtained in terms of A F .  
To calculate the free energy difference A F ( N ,  - f ,  N,) between systems of different 

size ( N , ,  N , )  and ( N ,  - 1, N , ) ,  consider an intermediate system with size (N,,  N , )  
by adding a column of ghost spins in the vertical (y) direction to  the system with the 
size ( N ,  - 1, N , )  (see figure 6). All the coupling constants associated with these ghost 
spins are set to  be zero, so they do not couple with any other spin or the magnetic field. 
The total free energy of this intermediate system, F I I  is the free energy of the original 
system minus the entropy of ghost spins; F, (N, ,  N , )  = F ( N ,  - 1, N,) - N ,  ln2.  The 
free energy difference A F ( N ,  - f ,  N , )  can then be obtained by solving the modified 
equation from (9) as 

(f(31, - ‘H + A F  + Ny In 2)), = (f(X - 21 - A F  - Ny In 2))x, (11) 

where ‘HI is the Hamiltonian of the intermediate system of size ( N ,  , Ny). In practice, 
we run two MC simulations with the Hamiltonian 31 (1) on a triangular lattice with 
two different sizes, ( N ,  - 1, N,) and (N,,  N , ) .  The configurations of the intermediate 
system 31, with size (N , ,  N,) are obtained from the configurations of the system 31 
with size ( N ,  - 1, N,) by adding a column of randomly generated ghost spins. During 
both simulations, we store the probability distribution P ( A H ) ,  with A X  = X - HI. 
Afterwards A F  follows easily by solving the equation 

C P , ( ~ ) ~ ( A F  + N ,  1n2 - h )  = C ~ , , ( h ) f ( h  - AF - N ,  1n2). (12) 
h h 

The configurations of the system with size ( N , , N , )  are used for the calculation of 
not only A F ( N ,  - $, N , )  but also A F ( N ,  + $, N , )  by supplying configurations of the 
intermediate system with size ( N ,  + 1, N,,). Notice that one can also obtain accurate 
values of the bulk free energies by extrapolating A F  (lim,y,m A F I N ,  = f :  the bulk 
free energy density per site). 

We consider lattices with vertical sizes 6n and horizontal sizes 671 + i ( n  = 1 , 2 , 3  
and i = 0, f1, f 2 ,  f 3 ) .  We use lo6 MC steps per spin (MCS) for each lattice a t  a given 
temperature. So the free energy differences A F  are obtained for N ,  = 6n rt 5/2,6n rt 
3/2, and 6n f 1/2 and Ny = 672. From ( lo) ,  both the clockwise and anticlockwise 
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Figure 6.  Construction of the intermediate system with size (N,.N,) from the 
system with size ( N ,  - l,Ny) by adding a column of ghost spins (denoted by open 
circle). Line segments between spins denote the ordinary couplings with strength J 
and broken line segment.s the zero couplings. 

interfacial free energies, q k l  are calculated for N ,  = 6n & 1 and 6n and N y  = 6n 
( n  = 1 , 2 , 3 ) .  In the infinite-lattice limit, we have 

N,?/*(N,, N,) = [ ( N ,  + 1)11*(N, + 1, N,) + ( N ,  - W?*(N, - 1, N,)1/2 (13) 

where we use the scaling relation of the interfacial free energies, see (8). The aspect 
ratio of this system ( N ,  = N,) is equal to s = L,/L, = 2 / a .  The exact value of the 
universal amplitude for the non-chiral three-state Potts model is A ( s  = 2 / & )  = 
1.203291...  (Park and den Nijs 1988). Note that an accuracy of about 1-2% is 
sufficient t o  distinguish universality classes; for example, the universal amplitude for 
the Ising model a t  this value of aspect ratio is 0.989 556 . .  .. 

First we run standard Monte Carlo simulations at  two temperatures: exp(-5/2) = 
0.225 and 0.226 (2p = 3 J ) .  The results for L,q* are plotted against N - ’ ,  see figure 7. 
From the curvature of these curves, we estimate the critical temperature exp(-5,/2) = 
0.2257 f 0.0001. This value agrees very well with the results from the transfer matrix 
calculations (Kinzel and Schick 1981). Then we run Monte Carlo simulations at  this 
critical temperature. The result is shown in figure 7. 

The results for the univeral FSS amplitudes of the clockwise and anticlockwise wall 
free energies extrapolate to the same value, within the numerical accuracy, identical to  
the exact value for the non-chiral three-state Potts model: Ai(s  = 2/&) = 1.22~t0.02 
(see table 1). As a check, we carried out a simulation a t  exp(-5/2) = 0.2258, and 
found no noticeable change in the value of t,he universal amplitude within statistical 
errors. 

The most important result is that we are able to determine the universal amplitude 
with an accuracy of about 2%, with relatively small lattice sizes and modest amounts of 
CPU. Within this accuracy, the transition along the 21.1 = 35 line has the same universal 
amplitude as in the non-chiral three-state Potts universality class. If one employs more 
sophisticated simulation algorithms such as the Swendsen-Wang algorithm (Swendsen 
and Wang 1987, Wang el a1 1989) and recently developed data-analysis techniques 
such as the (multi-) histogram method (Ferrenberg and Swendsen 1988, 1989), then 
the accuracy for the universal amplitudes should improve significantly (we learned 
of these techniques after the completion of our  standard Monte Carlo simulations). 
These rapidly developing techniques in Monte Carlo simulations will guarantee a good 
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N-’ 
Figure 7 .  Finite-size scaling behaviour of ( a )  the clockwise and (6) the anticlock- 
wise interfaces a t  several different temperatures exp(-J/2) = 0.2250, 0.2257, and 
0.2260. The arrow indicates the exact value of the universal amplitude A(. = 2 / 6 )  
for the non-chiral three-state Potts model. 

Table 1. The universal amplitudes A * ( s  = 2/&) of the triangular Ising lattice 
gas at the temperature exp( - J/2) = 0.2257 (the estimated critical temperature) and 
2p = 35. The value in the last row is an extrapolation to the thermodynamic limit 
(Nr  = m) of the Monte Carlo d a t a  

6 1.2568 f 0.0037 1.1149 f 0.0032 
12 1.2443 f 0.0047 1.1642 f 0.0071 
18 1.2339 f 0.0105 1.1898 f 0.0121 
OQ 1.22 f 0.02 

numerical accuracy in measuring the universal amplitudes of more complex systems 
where larger lattice sizes are needed. 

Moreover, our results shed some light on the physics of the triangular Ising lattice 
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gas. Although absent a t  zero temperature, chirality is present a t  finite temperatures 
along the line 2p = 35. The values of clockwise and anticlockwise interfacial free 
energies a t  finite sizes are not the same. In accordance with the discussion at  the 
beginning of this paper, the anticlockwise walls have a lower free energy. But asymp- 
totically, i.e. at the critical point in the thermodynamic limit the difference vanishes 
and we obtain the same universal leading FSS amplitudes. In a case like this we ex- 
pect that  the clockwise and anticlockwise interfaces have the same leading irrelevant 
exponents yT,2 = -4/5 and yCH = -1 (den Nijs 1984). Indeed, the curves in figure 
7 are consistent with almost straight lines. The difference in the slopes manifests 
the presence of the chirality. The corrections to  scaling due to  the leading irrelevant 
thermal operator ( P ~ , ~ )  and the leading chiral operator (yCH) can be distinguished in 
principle by adding or substracting the two interfacial free energies. The amplitudes 
of the corrections t o  scaling associated with pT,2 must be the same. With statistical 
errors as much as 1% for 18 x 18 lattices, it is doubtful to  distinguish such details into 
the numerical results. However, the data  are consistent with the theory. 
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